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We estimate the lower pointwise dimension and the generalized Renyi dimension of
an invariant measure of random dynamical systems with jumps. It is worthwhile to
note that the dimensions are a useful tool in studying the Hausdorff dimension of
measures and sets. Our model generalizes Markov processes corresponding to iterated
function systems and Poisson driven stochastic differential equations. It can be used as
a description of many physical and biological phenomena.
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1. INTRODUCTION

Let (Y, ‖ · ‖) be a separable Banach space, R+ = [0,+∞) and I = {1, . . . , N },
S = {1, . . . , K }. We first define our system.

Let �i : R × Y → Y , i ∈ I , be a finite sequence of dynamical systems; pi :
Y → [0, 1], i ∈ I , ps : Y → [0, 1], s ∈ S be probability vectors and [pi j ]i, j∈I ,
pi j : Y → [0, 1], i, j ∈ I, be a matrix of probabilities.

Let (�,�, P) be a probability space and let {tn}n≥0 be a sequence of random
variables tn : � → R+ with t0 = 0 and such that the increments �tn = tn − tn−1,
n ∈ N, are independent and have the same density g(t) = λe−λt .

Finally, let qs : Y → Y, s ∈ S be a family of continuous functions. In the
sequel we denote the system by (�, q, p).

The action of randomly chosen dynamical systems, with randomly chosen
jumps, at random moments {tn}n≥0 corresponding to the system (�, q, p) can be
roughly described as follows.
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We choose an initial point x ∈ Y and randomly select a transformation �i

from a set {�1, . . . ,�N } in such a way that probability of choosing �i is equal to
pi (x) and define

X (t) = �i (t, x) for 0 ≤ t < t1.

Next at the random moment t1, at the point �i (t1, x) we choose a jump qs from a
set {q1, . . . , qK } with probability ps(�i (t1, x)). Then we define

x1 = qs(�i (t1, x)).

After that we choose �i1 with probability pii1 (x1), define

X (t) = �i1 (t − t1, x1) for t1 < t < t2

and at the point �i1 (t2 − t1, x1) we choose qs1 with probability ps1
(�i1 (t2 −

t1, x1)). Then we define

x2 = qs1 (�i1 (t2 − t1, x1))

and so on.
Finally, given xn , n ≥ 2 we choose �in in such a way that the probability of

choosing �in is equal to pin−1in (xn), define

X (t) = �in (t − tn, xn) for tn < t < tn+1

and at the point �in (�tn+1, xn) we choose qsn with probability psn
(�in (�tn+1, xn)).

Then we define

xn+1 = qsn (�in (�tn+1, xn)).

It is well know (see ref. 5) that the random dynamical system with jumps
generates a semigroup of Markov operators {Pt }t≥0 acting on the space of Borel
measures on Y. It is also known (see refs. 7 and 9) that under suitable conditions
there exists a Markov operator P such that X (tk) has the distribution Pkµ if µ is
the distribution of x0. Relations between the measure µ0 invariant with respect to
the Markov operator P and the measure µ∗ invariant with respect to the Markov
semigroup {Pt }t≥0 were studied in refs. 6 and 15.

In our consideration we only assume that Y is a separable Banach space. The
model under consideration is a particular case of so-called piecewise-deterministic
Markov processes introduced by Davis.(1) The method of proving the existence of
an invariant measure used by Davis is not well adapted to the infinite-dimensional
case. The main difficulty is to show that piecewise-deterministic Markov pro-
cesses satisfy some ergodic properties on compact sets. However assumption of
compactness is restrictive if we want to apply our model in physics and biology.

The system considered in this paper generalizes some very important and
widely studied cases, namely dynamical systems generated by learning systems,
Poisson driven stochastic differential equations, iterated function system with
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an infinite family of transformations and random evolutions. A large class of
applications of such models, both in physics and biology, is worth mentioning here :
the short noise, the photoconductive detectors, the growth of the size of structural
population, the motion of relativistic particles, both fermions and bosons, and
many others (see refs. 3, 10, and 12). On the other hand, it should be noted that
most Markov chains, appear among other things, in statistical physics, and may be
represented as iterated function systems (see ref. 11). Recently, iterated function
systems have been used in studing invariant measures for the Ważewska partial
differential equation which describes the process of reproduction of the red blood
cells.(13,14) Similar nonlinear first-order partial differential equations frequently
appear in hydrodynamics.(19)

The dimension of invariant sets is among the most important characteris-
tics of dynamical systems. Hausdorff dimension, introduced in 1919, is a notion
of size usefull for distinguishing between sets of Lebesgue measure zero. The
notion was widely investigated and widely used, among other in the theory of
dynamical systems, where many interesting invariant sets are null in the sense
of Lebesgue. Unfortunately, in many cases the straightforward calculation of the
Hausdorff dimension was very difficult. This prompted researchers to introduce
other characteristics. Among them are capacity dimension, pointwise dimension,
correlation dimension, Renyi dimension, etc.

We estimate the lower pointwise dimension and the generalized Renyi dimen-
sion of the invariant measure of the random dynamical system with jumps. It is
worthwhile to note that the dimensions are a useful tools in studing the Hausdorff
dimension of measures and sets.(13,18)

The result of this paper is related to the papers.(13,17,20) In Szarek(20) con-
sidered the lower pointwise dimension of invariant measures related to Poisson
driven stochastic differential equations.

Using the notion of the Levy concentration function Lasota and Myjak(13)

introduced the concentration dimension (the generalized Renyi dimension) and
using this dimension they calculated some bounds of the concentration dimension
of fractals and semifractals generated by iterated function systems.

2. PRELIMINARIES

Let ( X, �) be a complete separable metric space. By B(x, r ) we denote the
open ball with center at x and radius r . For a subset A of X, cl A, diam A, and
1A stands for the closure of A, diameter of A and the characteristic function of A,
respectively.

By B(X) we denote the σ -algebra of Borel subsets of X and by M = M( X)
the family of all finite Borel measures on X. ByM1 = M1(X) we denote the space
of all µ ∈ M such that µ(X) = 1 and by Ms the space of all finite signed Borel
measures on X. The elements of M1 are called distributions.
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As usual, by B(X) we denote the space of all bounded Borel measurable
functions f : X → R and by C(X) the subspace of all continuous functions. Both
spaces are considered with the supremum norm ‖ · ‖0.

For f ∈ B(X) and µ ∈ Ms we write

〈 f, µ〉 =
∫
X

f (x)µ(dx).

An operator P : M → M is called a Markov operator if

P(λ1µ1 + λ2µ2) = λ1 Pµ1 + λ2 Pµ2 for λ1, λ2 ∈ R+ and µ1, µ2 ∈ M

and

Pµ(X) = µ(X) for µ ∈ M.

A linear operator U : B(X) → B(X) is called dual to P if

〈U f, µ〉 = 〈 f, Pµ〉 for f ∈ B(X) and µ ∈ M.

A measure µ0 ∈ M1 is called invariant or stationary with respect to a Markov
operator P if Pµ0 = µ0.

A family of Markov operators {Pt }t≥0 is called a semigroup if Pt+s = Pt Ps

for all t, s ∈ R+ and P0 is the identity operator on M. A measure µ∗ is called
invariant with respect to Pt if Ptµ∗ = µ∗ for every t ≥ 0.

Now introduce the class � of functions ϕ : R+ → R+ satisfying the following
conditions:

(i) ϕ is continuous and ϕ(0) = 0;
(ii) ϕ is nondecreasing and concave, i.e.

n∑
k=1

αkϕ(tk) ≤ ϕ

(
n∑

k=1

αk tk

)
, where αk ≥ 0,

n∑
k=1

αk = 1;

(iii) ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = ∞.

By �0 we denote the family of all functions satisfying conditions (i) and (ii).
Observe that for every ϕ ∈ � the function ρϕ = ϕ ◦ ρ is again a metric on X.
Moreover ρϕ is equivalent to ρ.

As usual, for A ⊂ X, s > 0 and δ > 0 we define

Hs
δ(A) = inf

∞∑
i=1

(diam Ei )
s

where the infinium is taken over all countable covers {Ei } of A such that diam Ei <

δ. Then

Hs(A) = lim
δ→0

Hs
δ(A)
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defines the Hausdorff’s-dimensional measure. The Hausdorff dimension of A is
defined by the formula

dim H A = sup{s > 0 : Hs(A) > 0}.
Here we admit that sup = 0.

Let µ ∈ M1. The Hausdorff dimension of µ is defined by the formula

dim Hµ = inf{dimH A : A ∈ B(X) and µ(A) = 1}.
Let µ ∈ M and x ∈ X. We define the lower pointwise dimension of µ at x

by the formula

dµ(x) = lim inf
r→0

log µ(B(x, r ))

log r
,

(where we assume that log 0 = −∞.)
Given µ ∈ M we define the Levy concentration function Qµ : (0,+∞) →

R+ by the formula (see ref. 16)

Qµ(r ) = sup{µ(B(x, r ), x ∈ X} for r > 0.

Further for a measure µ ∈ M1 we define the lower and the upper concentration
dimension of µ by the formulae

dimLµ = lim inf
r→0

log Qµ(r )

log r

and

dimLµ = lim sup
r→0

log Qµ(r )

log r
.

If dimLµ = dimLµ then this common value is called the generalized Renyi
dimension of µ and it is denoted by dimLµ. (In many papers dimLµ is called
concentration dimension of µ(13,15)).

3. INVARIANT MEASURES

Assume that we are given the system (�, q, p) on a separable Banach space
defined in Sec. 1. Recall that �k : R × Y → Y , k ∈ I , is a dynamical system, i.e.

(i)

�k(0, x) = x for every k ∈ I, x ∈ Y

and
(ii)

�k(s + t, x) = �k(s, (�k(t, x)) for every s, t ∈ R, k ∈ I

and x∈ Y.
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We assume that �k : R × Y → Y , k ∈ I and qs : Y → Y , s ∈ S are continuous
and that there exists x∗ ∈ Y such that∫

R+
e−λt‖qs(� j (t, x∗)) − qs(x∗)‖ dt < ∞ for j ∈ I, s ∈ S. (3.1)

Moreover suppose we are given probability vectors (p1, . . . , pN ), (p1, . . . , pK )
where pi : Y → [0, 1], ps : Y → [0, 1] and a probability matrix [pi j ]i, j∈I with
pi j : Y → [0, 1].

We assume that functions ps , s ∈ S and pi j , i, j ∈ I , satisfy the Dini condi-
tion, i.e.

N∑
j=1

|pi j (x) − pi j (y)| ≤ ω1(‖x − y‖) for x, y ∈ Y, i ∈ I,

∑
s∈S

|ps(x) − ps(y)| ≤ ω2(‖x − y‖) for x, y ∈ Y (3.2)

where the functions ω1, ω2 ∈ �0 and satisfy the Dini condition∫ ε

0

ωi (t)

t
dt < ∞ for some ε > 0.

Moreover, we assume that there exist constants L ≥ 1 and α ∈ R such that

N∑
j=1

pi j (y)‖� j (t, x) − � j (t, y)‖ ≤ Leαt‖x − y‖ for x, y ∈ Y, i ∈ I, t ≥ 0.

(3.3)
Finally we assume that there exists a constant Lq > 0 such that∑

s∈S

ps(x)‖qs(x) − qs(y)‖ ≤ Lq‖x − y‖ for x, y ∈ Y. (3.4)

Let {tn}n≥0 be the sequence of random variables introduced in Sec. 1.
We consider sequences of random variables : {xn}n≥0, xn : � → Y , {ξn}n≥0,

ξn : � → I , {ηn}n≥1 , ηn : � → S , auxiliary random variables {yn}n≥1, yn : � →
Y and stochastic process {X (t)}t≥0, X (t) : � → Y . We assume that they are related
by

yn = �ξn−1 (tn − tn−1, xn−1), xn = qηn (yn) for n ≥ 1

P(ξ0 = k|x0 = x) = pk(x),

P(ξn = i |xn = x and ξn−1 = k) = pki (x),

P(ηn = s|yn = y) = ps(y) for n ≥ 1, x, y ∈ Y, k, i ∈ I and s ∈ S
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and

X (t) = �ξn−1 (t − tn−1, xn−1) for tn−1 < t < tn,

X (tn) = xn. (3.5)

Assume that {ξn}n≥0 and {ηn}n≥0 are independent upon {tn}n≥0 and that for every
n ∈ N the variables η1, . . . , ηn−1, ξ1, . . . , ξn−1 are also independent.

Simple consideration shows that the process {X (t)}t≥0 is not Markovian. In
order to use the machinery of Markov operators we must to remodel the process
{X (t)}t≥0 in such a way that the new process becomes Markovian.

In this purpose consider the space Y × I endowed with the metric � given by

�
(
(x, i), (y, j)

) = ‖x − y‖ + �0(i, j) for x, y ∈ Y, i, j ∈ I, (3.6)

where

�0(i, j) =
{

c, if i 
= j,

0, if i = j

with the constant c suitably choosen.
Now we define a stochastic proces {ξ (t)}t≥0, ξ (t) : � → I by

ξ (t) = ξn for tn < t < tn+1, n = 0, 1, . . .

and we consider a stochastic process {(X (t), ξ (t))}t≥0, (X (t), ξ (t)) : � → Y × I .
It is easy to check that this process admits the Markov property.

This process generates a semigroup {T t }t≥0 defined by

T t f (x, i) = E( f ((X (t), ξ (t))(x,i))) for f ∈ C(Y × I ), (3.7)

where E( f (X (t), ξ (t))(x,i)) denotes the mean value of f ((X (t), ξ (t))(x,i)). Now we
define semigroup operators {Pt }t≥0, Pt : M1(Y × I ) → M1(Y × I ) by

〈Ptµ, f 〉 = 〈µ, T t f 〉 for f ∈ C(Y × I ), µ ∈ M1(Y × I ). (3.8)

In many applications we are mostly interested in the values of the process X (t)
at the switching points tn . Now we consider a sequence of random variables
{(xn, ξn)}n≥0. Clearly

(
xn, ξn

)
: � → Y × I and admits the Markov property.

Let µ0 be a distribution of the initial random variable (x0, ξ0), i.e.

µ0(A) = P
(
(x0, ξ0) ∈ A) for A ∈ B(Y × I ).

For n ∈ N we denote by µn the distribution of (xn, ξn), i.e.

µn(A) = P
(
(xn, ξn) ∈ A

)
for A ∈ B(Y × I ).

Then there exists (see ref. 7) a Markov–Feller operator P : M(Y × I ) → M(Y ×
I ) such that

µn+1 = Pµn for every n ∈ N.
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Moreover, the operator P is given by the formula

Pµ(A) =
∑
j∈I

∫
Y×I

∫ +∞

0

∑
s∈S

λe−λt · 1A(qs(� j (t, x)), j)pi j (x)

× ps(� j (t, x)) dt µ(dx di) (3.9)

and its dual operator U by the formula

U f (x, i) =
∑
j∈I

∫ +∞

0

∑
s∈S

f (qs(� j (t, x)), j)pi j (x)ps(� j (t, x))λe−λt dt.

Theorem 3.1. Assume that the system (�, p, q) satisfies the conditions (3.1)–
(3.4). Assume, moreover that

L Lq + α

λ
< 1. (3.10)

Then the operator P defined by (3.9) admits an invariant measure.

Proof. The proof can be found in ref. 7. �

It was shown in ref. 6 that there is a one-to-one mapping between the invariant
probability measure for (X (t), ξ (t)) and the invariant probability measure for the
Markov chain given by post jump locations (xn, ξn). However, the proof is given
for R

n but it remains valid for Banach spaces.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold. then the semigroup
{Pt }t≥0 given by (3.8) admits an invariant measure µ∗. Moreover, if µ0 ∈ M1(Y ×
I ) is the invariant measure for Markov operator P then

µ∗ = Gµ0

where

Gµ(A) = ∑
i∈I

∫ +∞

0

∫
Y×I

1A(�i (t, x)), i)pki (x)λe−λt dt dµ(x, k)

f or A ∈ B(Y × I ) µ ∈ M.

Proof. The proof follows from Theorem 3.1(6) and Theorem 3.1. �

4. LOWER POINTWISE DIMENSION OF AN INVARIANT MEASURE

We start with the following technical observation.
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Lemma 4.1. Assume that µ∗ is the invariant measure of the semigroup {Pt }t≥0

given by (3.8). Then

µ∗(A) ≥ e−λt
∫

Y×I
1A(�i (t, x), i)dµ∗(x, i) f or A ∈ B(Y × I ). (4.1)

Proof. Fix A ∈ B(Y × I ) and t ≥ 0. We have

µ∗(A) = Ptµ∗(A) =< U t 1A, µ∗ >=
∫

Y×I
E1A((X (t), ξ (t))(x,i))dµ∗(x, i).

(4.2)
Fix (x, i) ∈ Y × I and observe that

E1A((X (t), ξ (t))(x,i)) =
∫

�

1A((X (t), ξ (t))(x,i)(ω))P(dω)

≥
∫

�0(t)
1A((X (t), ξ (t))(x,i)(ω))P(dω),

where �0(t) = {ω ∈ � : t ≤ t1(ω)}.
Since ((X (t), ξ (t))(x,i)(ω)) = (�i (t, x), i) for ω ∈ �0(t) and P(�0(t)) = e−λt

we obtain

E1A(X (t), ξ (t))(x,i)) ≥ e−λt 1A(�i (t, x), i).

From (4.2) the statement of Lemma 4.1 follows immediately. �

Theorem 4.1. Let the assumptions of Theorem 3.2 hold and let µ∗ be the unique
invariant measure with respect to the semigroup {Pt }t≥0 given by (3.8). Assume
that

σ = inf
x∈Y,i, j∈I

pi j (x) > 0. (4.3)

Moreover, assume that for every j ∈ I there exists a constant l j ∈ (0, 1] such that

‖� j (t, x) − � j (t, y)‖ ≥ l j‖x − y‖ f or x, y ∈ Y, t ≥ 0 (4.4)

and for every x ∈ Y and j ∈ I there exist δ j > 0 and cx, j > 0 such that

‖� j (t, x) − x‖ ≥ cx, j t f or 0 < t < δ j . (4.5)

Then

dµ∗(x, i) ≥ log 3

log 3 + log L
σ min j l j

f or (x, i) ∈ Y × I,

where L is the constant appearing in the condition (3.3).

Proof. We consider two cases : α ≥ 0 and α < 0. �
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Case I. Suppose first that α ≥ 0. Let x ∈ Y and k ∈ I be fixed. Choose ε > 0
such that

r0 = ln(1 + εσ
L )

2α
≤ δk (4.6)

and choose η > 0 such that

1 − e−λr0 < η.

Set

θ = min j l j

3( L
σ

+ ε)
, β = 1

(3 − 2η)(1 − η)

and

s = log β

log θ
.

Since min j l j ≤ L
σ

thus s < 1.
We will show that there exists C > 0 such that

µ∗(B(x, k), r ) ≤ Crs (4.7)

for every r > 0. Set

M = 2L( L
σ

+ ε)eαr0

σcx,kr0(min j l j )s

and

C = max

{
(θr0)−s,

λ

η
r0, M

s
1−s

}
, (4.8)

r∗ = inf{r > 0 : µ∗(B(x, k), r ) ≤ Crs, for r > r}.
Obviously, condition (4.7) holds for all r ≥ r0. Observe that

r∗ ≤ M−1/(1−s). (4.9)

We claim that r∗ = 0. Suppose, contrary to our claim that r∗ > 0 and choose
r ∈ ( r∗

3( L
σ
+ε)

, r∗] such that

µ∗(B(x, k), r min
j

l j ) > C(r min
j

l j )
s . (4.10)

Define

x0 = �k(−t, x), x1 = �k(t, x)

where t = r0(r min j l j )s . Further, let

B1 = B

(
(x, k),

(
L

σ
+ ε

)
r

)
, B2 = B((x0, k), r ),
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B3 = B

(
(x1, k),

(
L

σ
+ ε

)
r

)
.

Now, let (y, i) ∈ B2 then by (3.3) and (4.3) we have

‖�k(t, y) − x‖ ≤ L

σ
eαt‖y − x0‖ ≤ L

σ
eαr0r <

(
L

σ
+ ε

)
r.

Therefore

B2 ⊂ {(y, i); (�i (t, y), i) ∈ B1}.
Using this inclusion and Lemma 4.1 we obtain

µ∗(B1) ≥ e−λt
∫

Y×I
1B1 (�i (t, y), i)dµ∗(y, i) ≥ e−λtµ∗(B2) ≥ (1 − η)µ∗(B2).

(4.11)
Analogously one can show that

µ∗(B3) ≥ (1 − η)µ∗(B2). (4.12)

From (4.5), we have

‖x1 − x‖ = ‖�k(t, x) − x‖ ≥ cx,k t ≥ σ

L
e−αr0 cx,k t

and

‖x − x0‖ ≥ σ

L
e−αt cx,k t ≥ σ

L
e−αr0 cx,k t . (4.13)

Since

r <

(
σcx,kr0(min j l j )s

2L
(

L
σ

+ ε
)

eαr0

)1/(1−s)

and t = r0(r min j l j )s we obtain

‖x1 − x‖ > 2

(
L

σ
+ ε

)
r

and

‖x − x0‖ > 2

(
L

σ
+ ε

)
r.

Thus B1, B2, B3 are mutually disjoint and

B1 ∪ B2 ∪ B3 ⊂ B

(
(x, k), 3

(
L

σ
+ ε

)
r

)
.

Set B4 = B((x, k), r min j l j ). Now we are going to verify that

µ∗(B2) > (1 − η)µ∗(B4). (4.14)
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Let us suppose that, contrary to the above

µ∗(B2) ≤ (1 − η)µ∗(B4). (4.15)

Since (�k(t, y), k) /∈ B4 for (y, k) /∈ B2, we have

µ∗(B4) ≤ e−λt
∫

Y×I
1B4 (�i (t, y), i)dµ∗(y, i) + 1 − e−λt ≤ e−λtµ∗(B2)

+ 1 − e−λt ≤ µ∗(B2) + 1 − e−λt .

From the last inequality and (4.15) it follows immediately that

µ∗(B4) ≤ 1 − e−λt

η
≤ λt

η
= λr0

η
(r min

j
l j )

s .

Consequently by the choice of C we obtain

µ∗(B4) ≤ C(r min
j

l j )
s

contrary to (4.10).
Further, from (4.11), (4.12) and (4.14) it follows that

µ∗

(
B(x, k), 3

(
L

σ
+ ε

)
r

)
≥ (3 − 2η)µ∗(B2) ≥ (3 − 2η)(1 − η)µ∗(B4),

thus

µ∗(B4) ≤ µ∗(B(x, k), 3( L
σ

+ ε)r )

(3 − 2η)(1 − η)
.

By the last inequality, the fact that 3( L
σ

+ ε)r > r∗ we have

µ∗(B4) ≤ C
(
3
(

L
σ

+ ε
)

r
)s

(3 − 2η)(1 − η)
=

(
3
(

L
σ

+ ε
))s

C(r min j l j )s

(min j l j )s(3 − 2η)(1 − η)
.

Since (
3
(

L
σ

+ ε
)

min j l j

)s

= (3 − 2η)(1 − η),

thus

µ∗(B4) ≤ C(r min
j

l j )
s

which contradicts (4.10). Thus r∗ = 0 and

µ∗(B(x, k), r ) ≤ Crs for r > 0.

From the last statement it follows that dµ∗(x, k) ≥ s. Letting ε → 0 and η → 0,
we complete the proof in Case I.
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Case II. Suppose now that α < 0. The proof runs analogously to the proof in
Case I and we only point out the main differences of it.

Let x ∈ Y and k ∈ I be fixed. Choose ε > 0 such that

r0 = ε ≤ δk

and set

C = max


(θr0)−s,

λ

η
r0,

(
2L

(
L
σ

+ ε
)

σcx,kr0(min j l j )s

)s/(1−s)



in place of (4.6) and (4.8). Define the other constants as in Case I. Then

r∗ ≤
(

σcx,kr0(min j l j )s

2L
(

L
σ

+ ε
)

)1/(1−s)

.

In place of (4.13), we have

‖x1 − x‖ = ‖�k(t, x) − x‖ ≥ cx,k t ≥ σ

L
cx,k t

and

‖x − x0‖ ≥ σ

L
e−αt cx,k t ≥ σ

L
cx,k t .

Argument similar to that of Case I gives that B1, B2, B3 are mutually disjoint. The
rest of the proof runs as before. �

5. UPPER BOUND FOR THE GENERALIZED RENYI DIMENSION

OF AN INVARIANT MEASURES

The Hausdorff dimension and the generalized Renyi dimension (the concen-
tration dimension) are related by the following two propositions (see ref. 13).

Proposition 5.1. Let µ ∈ M1 and let A ∈ B(Y ) be such that µ(A) > 0 Then

dim H A ≥ dimLµ.

Proposition 5.2. Let A ⊂ Y be a nonempty compact set. Then

dim H A = sup dimLµ,

where the supremum is taken over all µ ∈ M1 such that suppµ ⊂ A.

To prove the main results of this section we need the following
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Lemma 5.1. Let the numbers ai ∈ [0, 1] and bi ∈ (0, 1) for i ∈ J , be given (here
J is an arbitrary set of indexes ). Let µ be a probability measure. Assume that for
some c > 0 the Levy concentration function Qµ satisfies the following condition

Qµ(r ) ≥ sup
i∈J

ai Qµ

(
r

bi

)
for r ∈ (0, c). (5.1)

Then

dimLµ ≤ inf
i∈J

log ai

log bi
. (5.2)

Proof. The proof can be found in ref. 13. �

Theorem 5.2. Let the assumptions of Theorem 3.1 hold and let µ0 be the unique
invariant distribution with respect to the operator P given by (3.9). In addition
assume that

σ = inf
x∈Y,i, j∈I

pi j (x) > 0 (5.3)

and

γ = inf
x∈Y,s∈S

ps(x) > 0. (5.4)

Finally, we assume that

Lq L

σ
< 1. (5.5)

Then

dimLµ0 ≤ log σγ

log L Lq

σ

(5.6)

for α ≤ 0 and

dimLµ0 ≤ inf
M∈(M0,1)

log(σγ (1 − M
λ
α ))

log L Lq

σ M

(5.7)

where M0 = Lq L
σ

for α > 0.

Proof. Let x ∈ Y and k ∈ I be fixed. By (3.4) there exists s0 = s0(x) (depend on
x) such that

‖qs0 (x) − qs0 (y)‖ ≤ Lq‖x − y‖ for y ∈ Y. (5.8)
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From (3.3), (5.3) and (5.8) we have

‖qs0 (�k(t, x)) − qs0 (x)‖ ≤ Lq‖�k(t, x) − x‖ ≤ L Lq

σ
eαt‖x − �k(−t, x)‖.

(5.9)
Therefore

{x ∈ Y : (x, k) ∈ B

(
(�k(−t, x), k),

rσ

L Lqeαt

)

⊂ {x ∈ Y : (qs0 (�k(t, x)), k) ∈ B((qs0 (x), k), r )}.
Since µ0 is invariant, from (3.9) it follows that

µ0(B((qs0 (x), k), r )

≥ σγ

∫ +∞

0

∫
Y×I

1B((qs0 (x),k),r )(qs0 (�k(t, x)), k)λe−λt dtdµ0(x, i)

≥ σγ

∫ +∞

0
µ0

(
B

(
(�k(−t, x), k),

rσ

L Lqeαt

))
λe−λt dt. (5.10)

This, in turn implies

Qµ0 (r ) ≥ σγ

∫ +∞

0
Qµ0

(
rσ

L Lqeαt

)
λe−λt dt. (5.11)

Now we consider two cases: α ≤ 0 and α > 0. Suppose first that α ≤ 0, then

Qµ0

(
rσ

L Lqeαt

)
≥ Qµ0

(
rσ

L Lq

)
for t > 0 and r > 0.

Consequently, the function Qµ0 satisfies the inequality

Qµ0 (r ) ≥ σγ Qµ0

(
rσ

L Lq

)
for r > 0.

From this and Lemma 5.1 we obtain

dimLµ0 ≤ log σγ

log L Lq

σ

.

Suppose now that α > 0. Choose M < 1 such that L Lq

σ
< M . Then from (5.11)

we obtain

Qµ0 (r ) ≥ σγ

∫ t

0
Qµ0

(
rσ

L Lqeαt

)
λe−λt dt ≥ σγ Qµ0

(
Mσr

L Lq

)
(1 − e−λt )

(5.12)
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where t = − ln M
α

. From this and Lemma 5.1 we obtain

dimLµ0 ≤ log(σγ (1 − M
λ
α ))

log L Lq

σ M

.

Define �

L0 = inf
s∈S

inf

{‖qs(x) − qs(y)‖
‖x − y‖ , x 
= y

}
.

Remark 5.1. Let the assumptions of Theorem 5.1 hold and assume that L0 > 0.
Then the unique invariant distribution µ∗ with respect to the semigroup {Pt }t≥0

satisfies

dimLµ∗ ≤ s

where s = log σγ

log
L Lq
σ

for α ≤ 0 and s = log(σγ (1−M
λ
α ))

log
L Lq
σ M

for α > 0.

Proof. Let µ0 be the unique invariant measure with respect to the Markov oper-
ator P given by (3.9). From Theorem 5.1 it follows that

dimLµ0 ≤ s.

On the other hand, it is known (see ref. 6) that

dimLµ∗ ≤ dimLµ0.

�

6. APPLICATIONS

6.1. Example

6.1.1. Learning System

Consider a dynamical system of the form I = {1} and �1(t, x) = x for t ∈
R+ and x ∈ Y . Moreover, assume that p1(x) = 1 and p11(x) = 1 for x ∈ Y . Then
we obtain an iterated function system (Q, p) = (q1, . . . , qK , p1, . . . , pK ) with
continuous functions qs : Y → Y, s ∈ S = {1, . . . , K } and with state dependent
probability vector p = (p1, . . . , pK ) where ps : Y → [0, 1] and

∑K
s=1 ps(x) = 1

for x ∈ Y . This system is quite often called a learning system. The system learns
because in a new position xn it uses a new strategy p(xn) for choosing the next
step.

A transition operator corresponding to learning system (Q, p) is given by

Pµ(A) =
∑
s∈S

∫
Y

1A

(
qs(x)

)
ps(x) µ(dx) for A ∈ B(Y ), µ ∈ M1(Y ).

(6.1)
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From Theorem 5.1 we immediately obtain the following result, which belongs to
Lasota and Myjak.(13)

Theorem 6.1. Let (Q, p) be an iterated function system having an invariant
measure µ0 ∈ M1. Assume that the transformations qs : Y → Y , s ∈ S satisfy
the Lipschitz condition

‖qs(x) − qs(y)‖ ≤ Lq‖x − y‖ for x, y ∈ Y

with Lq < 1 and

γ = inf
x∈Y,s∈S

ps(x) > 0.

Then

dimLµ0 ≤ log γ

log Lq
.

6.2. Example

6.2.1. Poisson Driven Stochastic Differential Equation

Let (�,�, P) be a probability space. Consider a stochastic differential equa-
tion

dξ = a(ξ )dt + b(ξ )dp for t > 0 (6.2)

with the initial condition

ξ (0) = ξ0, (6.3)

where a, b : Y → Y are Lipschitzian functions, Y is a separable Banach space,
{p(t)}t≥0 is a Poisson process and the initial condition ξ0 is a random variable on
� with values in Y , independent on {p(t)}t≥0.

Let S = I = {1} and let �1(t, x) = �(t, x) be the unique solution of the
Cauchy problem

du

dt
= a(u(t)), u(0) = x . (6.4)

Moreover, let q1(x) = q(x) = x + b(x). Let x ∈ Y , by ξ (t)x denote the solution
of problem (6.2),(6.3) with x0 = x . Then, for every t ≥ 0 and f ∈ C(Y ) define

U t f (x) = E( f (ξ (t)x ).

Moreover, for every t ≥ 0 there exists the operator Pt : Ms → Ms satisfying the
duality condition

〈 f, Ptµ〉 = 〈U t f, µ〉 for f ∈ B(Y ), µ ∈ M1. (6.5)
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In many applications we are mostly interested in the values of the solution ξ (t)
at the switching points tn , where {tn}n≥0 is a sequence of random variables
tn : � → R+ with t0 = 0 and such that the increment �tn = tn − tn−1, n ∈ N are
independent and have the same density g(t) = λe−λt . Set xn = ξ (tn) and denote
by µn(A) = P(xn ∈ A). It is easy to check that µn = Pnµ, n ∈ N, where P is the
transition operator corresponding to the above stochastic equation and given by

Pµ(A) =
∫

Y

∫
R+

λe−λt 1A(q(π (t, x)))dtµ(dx) A a Borel subset of Y. (6.6)

From Theorems 5.1 and 5.2 we obtain the following result, due to Myjak and
Szarek(17)

Theorem 6.2. Let � be the solution of unperturbed systems (6.4). Assume that
there exist positive constants α and Lq such that

‖x − y‖ ≤ ‖�(t, x) − �(t, y)‖ ≤ eαt‖x − y‖ for x, y ∈ Y, t ≥ 0, (6.7)

‖q(x) − q(y)‖ ≤ Lq‖x − y‖ (6.8)

and

Lq < exp
(
−α

λ

)
. (6.9)

Finally we assume that a(x) 
= 0 for x ∈ Y . Let µ∗ and µ0 be the invariant
distributions with respect to the semigroup Pt given by (6.5) and the operator P
given by (6.6) respectively. Then

dµ∗(x) ≥ 1 f or x ∈ Y (6.10)

and

dimLµ0 ≤ ln(1 − e−1)

ln Lq + α
λ

. (6.11)
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